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ABSTRACT

A statistical measure of the performance of an adaptive beam-forming technique for a
multisensor linear array has been developed. The sample complex vector signal process, Z(t;)
as observed at sample times (t) e (O,7) is used to calculate a positive, definite, maximum
likelihood estimate (M.L.E.) R'of the signal process covariance matrix R. Then, an estimated
measure of the performance of the array in terms of its ability to suppress an interferini, signal
is developed from an a priori specified process matrix E(R, its sample M.L.E. estimate R'and
a form of the Wishart distribution. In particular, such an estimated measure of performance in
terms of suppressing an interfering signal with an angle of arrival (A.OA) of Otrelative to a beam
AOA of 0 is the statistic represented by the absolute difference of the "norms. {I I b
- IIo1l) . The estimate f-' = V* (01) R V(0,) , it's exact value is p-1 V*(O,)' R-' V(O,) and
P R are functions of V(O,) and V* (02).
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I. BACKGROUND.

The research undertaken here is a statistical study of the performance properties of an
adaptive beam-forming algorithm when utilized to process stochastic signals as received by a
multi-element linear array.

A performance measure is defined which represents the degree to which the adaption process
minimizes off-boresight signal interference from a single source.

It is well known, particularly in acoustics, that multipath signal interference in a dispersive

medium such as salt water presents many difficulties to the detection and acquisition of wanted
signals when in the presence of unwanted or interfering signals. In fact, even in the case of a
single interferer, it is often very difficult to supress such signals at low signal-to-noise (SNR)

ratios without the processing enhancement as offered by adaptive beam-forming techniques.

Most of the existing adaptive signal processing techniques deal with the deterministic,
expected or steady state properties of stochastic signal processes which enable one to defer or
even ignore the distributional aspects of the signal processes being considered. Therefore, since

most interest and concern has been given heretofore to beam-forming techniques using assumed
expected values of signal processes parameter estimates rather than to the distributional aspects
thereof, it was decided that improvements in the analysis of beam-forming techniques could best

be achieved by a rigorous statistical analysis of the problem. Thus, major emphasis was placed
on development of the distribution of the estimated measure of supression of off boresight
signals.

It has long been recognized that the distributional -spects of statistical sampling theory
could be adapted to provide quantitative measures of performance for physical processes such

as the beam forming of signals from an array of sensors. In some cases, such as for multi-var-

iate, (vector) Gaussian stochastic processes, many of the essential sampling distributional
properties and characteristics were developed and published by John Wishart2 of Rothamsted

Experimental station in England, circa 1928. Then in those lean, worldwide depression years
of 1932 and 1933, Wishart and Bartlett3'. , while at Cambridge University, utilized a character-

istic function approach, made possible by the work of Ingran3 , to rigorously established the
existence of a class of distributions which became known later as Wishart distributions. In

1938, the noted Chinese mathematician, P. L. Hsu', generated an elegant proof for the exist-
ence of a general form of the Wishart distribution by mathematical induction.

In 1956 Cramer' and in 1963, Fisz' exemplified this form of the Wishart distribution, citing

the earlier works of Wishart and Bartlett and the existence proof of Ftsu, respectively. With the
advent of later works in the vector calculus, linear algebra, matrix theory and modern abstract
analysis, multivariate statistical analysis became a very powerful tool in the mathematical
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modeling of multidimensional (vector) stochastic physical processes such as encountered in the
adaptive beam forming of passive signals, received from an array of sensors consisting of a large
number of elements.

In 1984, Anderson' of Stanford, published the second edition of his "Encyclopedic" text
on multi-variate analysis in which he rigorously developed all of the properties of the several
classes of Wishart distributions both in the real and complex domains. Thus, it is the Wishart
distribution and the various transformed versions thereof which provide the statistical founda-
tions for the work to be presented in this report.

1
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2. INTRODUCTION.

In the research results presented here, a statistical measure of performance for an adaptive
beam-forming technique and its associated distribution function has been developed for the case
of a complex Gaussian signal process. The statistical measure is a sample estimate of the degree
to which and adaptive beam-forming process fot ; linear array can minimize the off-axis inter-
ference of a plane wave propagated from a single interferer. Most of the existing signal
processing references are concerned only with the expected value of requisite statistical estima-
tors. That is, the existing work has assumed only that the sample estimators of interest exist
and are unbiased. What is not well understood by many signal processing practitioners,
however, is how system parameters and the number of sensors effect the distribution of the
estimators. When complete, this research can be utilized to provide answers to the following
types of questions:

Given a noise model, interference model and sensor array size, what is the optimal sampling
method in order to obtain a specified probability of detection while at the same time
utilizing a minimum amount of computing resources?

* What are the tradeoffs being made when a system design selects block averaging over
exponential averaging? Will system performance improve and if so by how much? b

" It is well known that the noise sampled at adjacent sensors is not statistically independent.
What are the effects of this anisotropy on the distribution of the beam-former output as a
function of sampling technique?

SF7or arrays with a very large number of sensors ( > 10) a long sampling time would be
required to form a good estimate of the covariance matrix. In this case, how does one
develop a strategy to combine sensors to produce the best improvement in the estimation
of the covariance matrix while keeping within the desired integration times?

The distribution of the performance estimate (in terms of the inverse covariance matrix
estimate) enables the specification of confidence bounds for the process performance meaure
as a function of the number of samples and an a priori selected level of significance. These
results are valid for any signal processing system operating in a low SNR environment and

where statements of precision for requisite estimates are most desirable.

2-1 ru
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3. THE SIGNAL SAMPLE SPACE.

Consider an n element (n > 2), multi-sensor linear array with a spacing between sensors of
one half the wave length ( A12 ). The sample signal process Z(t,) e 0, k = 1,2, ..., M is
considered to be a complex, non-zero mean, wide-sense stationary, Gaussian vector process
with sample components, z,(Q,), z(4,), ... , z(:), for each {i,} e [O,f], T< 00, k = 1,2, ..., M.
Thus, the sample vector

Z I(1k)

I 2(k)I
Z(tk) and Z* (k) = [Y(t) '2(1k)... YJ,0) (3.1)'O

Then, for each t, e [0,f]; A = 1,2,.-.., M, the complex sample vectors Z(i,), Z(12), Z(I,) are
assumed to be independent identically distributed (l.l.D.) over a temporal sample interval
[O,7]J for 7"< oo. Perhaps a less restrictive condition than general independence is to consider
the sample vectors as random variables from a quasi-stationary, Gaussian sample process which

is (strict sense) stationary over the finite sample intcrvai [O,TJ, but temporally uncorrelated
through at lease the second degree. In general, a second degree, uncorrelated sample process
is a process in which the sample values about the mean are uncorrelated such that
E [(7, -®E,)]A, = 0 for (k') = 1,2, ... ,M.

A principle reason for meeting such a sampling condition is that the sample estimates of the
process parameters which define the covariance matrix are statistically consistent and hence so
is the covariance matrix R.

3-1
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4. COMPLEX MULTIVARIATE GAUSSIAN CASE.

Consider a sample set of size M of second degree, uncorrelated, Gaussian random vectors
(Z , 73..., Z) c- 0' where Z, = Z(t,), i e [1,Mj, as previously defined. Then M (n element)
I.I.D. complex vectors have the joint probability density function,

f (Z Z1 . ZM) = 1"( )1R 1- 12 e- l 2(Z- 0 s)'R -'(z - @')

k=. (4.1)
-Mn -' -M [(Z- e,)°R- 1 (Z- e')]=n 2 IRI

where the complex process means E) = E(Z) and the covariance matrix R e M. (n x n complex
matrix) is a nonsingular I lermitian matrix such that (Z- S,)* R(Z - 0,) > 0 for all non-zero
(Z - @,) e (7, and hence R is positive definite. Therefore, the matrix R I e M. exists and is also
a positive lermitian matrix.

-V

4-1
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5. MAXIMUM LIKELIHOOD ESTIMATES OF 8 R.

It can be demonstrated that if Z,,.... , Z, constitutes a sample of size M of an n element
I.I.D. complex Gaussian vector process where each complex vector is N(0, R) with M > n,
then the maximum likelihood estimators of E and R are:

M MII

S=- R (Z ) - 0 )(Zk - O,) (5.1)
k-I k-I

For computational purposes we write

M M
A t~*~ A =_

0,- Z L7k ; ,=- jk (5.2)
k-t k-I

M
A A A*

R - - zk-Z M%- z (5.3)
M

7 lk

Z2k

Z(tk) = 7 k and 7*(tk ) 7'k [ilk 2 k .. k] (5.4)

,.k

M M

A Al

0 Z k-i k-

and hence, the sample covariance matix is

RM f fu-- Azl I-F.- 71k Z (5.7)

k-I k-! *-I5-
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6. THE WISHART DISTRIBUTION.

In 1928 John Wishart prublished the first of several papers 2.1.4 in multivariate statistical
A 

M

analysis. Anderson' shows that if the sample covariance matrix, R - (M -I)S E .(X, - X)',
where X,, ... , X(M > n) are n component, real valued, statistically independent v[ctors, each
with distribution N(pu, R) then R has the density

g( A R j1I2(M4-n-2)e-II2tr(R_ 'R)(6)
g(P IR,M,n) = _ 12(M)e-"r r.

2tl2n(M) It -4 ) IRI 1/2(M-1) l/[ 112(M -0]

for h positive definite and 0 otherwise. The expression (5.1) is the original Wishart result in real
vector form. For Z,, Z, ... , Z, normally distributed complex vectors, each with mean E) and

lermitian covariance matrix, R, the sample estimate R of the covariance matrix R has the

complex Wishart density

A -

,A 
IR I(M-)e /21 RR)

g(R e MA) I R,M,n) = n (6.2)
1 /2n(n-l)IRIRJIlI-(M-i+I)

7N 7 A A N 
I

where R= 0(Z' -) E)(Z7- ( ,- Z , M= N-I, and (R and A)e MA, are Ilermi-

tian positive definite matrices, since Z* RZ > 0 and Z* RZ > 0 for all non-zero Z e 0 . The

matrices R and R have the additional property, that if the number of sample vectors Al are

greater than n the number of components of each vector, then the probability is unity of

drawing a sample so that A is positive definite (Z*' Z) > 0 and on the other hand, if Al < n

(i.e., the number of sample vectors is less than the number n of the components of which each

vector is composed) then it can be demonstrated that A does not have a density, but is does

have a well defined cumulative distribution function (c.d.f.) (monotone non-decreasing).

G(RIRM'n)= -<0,_ 1R> (6-3

For R and Hermitian positive definite it follows that R-' and h-1 are also Hermitian

positive definite. In addition by'

Theorem I

If If is a Hermitian matrix, then x*l1x is real for all x e C'.

6-1..
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Proof-

Write (x* lx) = (xll1x)* = (x)*(Jf)*(x*)* = xllx) =(x* lix), i.e., (x* lix) equals its complexA

conjugate and is therefore real by definition.

A

'4,

6-2I
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7. BEAM-FORMING MEASURE OF PERFORMANCE.

In adaptive beam-forming problems, an appropriate measure of performance of the beam-
froming technique is the degree to which the beam-former output approaches an ideal supes-
sion response to unwanted signals in an otherwise "noise free" environment. By noise free it is
meant in the absence of external and/or internal tytem noise, deterministic or random.

Thus, an ideal measure of performance in the sense of suppressing the unwanted signals of
a single interferer at an AOA of 03 by the beam-forming processing at an AOA of 0,, is

- V(O)R- (02)V(O8) (7.05)

Then the sample estimator f" of p-' and its destributional properties with resepct to p-1
are defined as follows.

Consider an interfering signal with an AOA of 0 relative to a linear array with a beam
formed at an AOA of 0,. For Rj'(O2)-- [&X02)] Hermitian and positive definite, it followsA

j(0, 02) = V*(O,)R '(02)V(01) > 0 (postive definite) and real by Theorem 1. V*(O), V(O) are the

usual phase vcctors used in conventional beam forming. Because "j(O,, 02) is a function of the
number of time samples M for any AOA's 0,3 it can be demonstrated that

lir , -(7.)

and

M - E(- p f' - 0 (7.2)

Hence, A4 converges in expectation to p-1 and is also a consistent estimate by (7.2).

For notational sake, we will use ( A) - ' and (P,) = R-1. The sample statistic p-' can be
written as a matrix

N

PU -D 0t  0tV^) (7.3)

which is positive definite and thus real by Theorem I.

Deriving the distribution of h-' from the complex Wishart density given by (5.2) and
computing the Jacobian of the transformation (B '), which is the determinant of the
it x ,n2 positive definite matrix

7-1
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Ap

B)(7.4)

Consequently,

g(B = (R,M,n)I R-2 =(R- I R-1,M,n) (7.5)

if R-' is positive definite and 0 otherwise.

The density distribution for the sample statistic, P-' can then be obtained from (7.5) for

B= "= V* (,)R-'V(O,) and calculating J(B)= J[V*(O,)R-'V(O,)] = J[b,,] where b,,

= [,,(0,)i(,)] . These calculations yield
g( A I €~nj A-

g(b I P,M,n)J(B) = g(V (61)R V(O1) I P, M,n) (7.6)

for 1,' > 0 and 0 otherwise.

Using the Wishart density function (7.6) it is found that the sample statistic,

in

IIBII2 i~ulVto)V o] , 12 (7.7)

with

IlPl12=[ ZIP7I2VO,)v^o,)]"2'=11p-'112  (7.8)

has density

then it follows quickly that,

P[I 1 '112 - I'1fl 2I < (M. )] J- dG(l l '11 .M.) = I -(7.10)

or

p([,,A-',12 - 1- 2]2  2 ( . ) -[ "" ( ,A-,., -, 1.,
J (Al. a) dG(II '12 1 1 12 -U

0

7-2
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Where Ml is the number of time samples and 0 < a < 0. 10 is an a priori selected level of signi f-
icance. The cumulative distribution function represented by (7.11) yields the probability
I - a, that I?12will fall into ar interval (confidence interval) of width 2c(tx, A)with midpoint

fl~17-3
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N
8. A QUICK LOWER BOUND IN PROBABILITY.

Many times a useful lower bound in probability can be obtained by the use of Chebyshev's

Inequality ". Consider the sample statistic jI1-IIh with Ellb-11h < 00 and al(Ilb-1i 2a) < 00 as before.
Then by Chebyshev's inequality and the sample estimate aj,

I II EiP- : V, _ (8.1)
P1- P 112 <

This bound can be quite sharp in this case, since ao(ll 'Il2) - 0(1/0A. Another very useful I

inequality for a quick estimate of the statistical magnitude of the random variable I"11, is given
in terms of thc Maikov inequality

Al IA-1 E1P 112
'jIp III : a] (8.2)

where a > 0 and Ji-III2 > 0, regardless of the actual distribution of liIII1,, which of course has
been demonstrated to be Wishart by expressions (7.9) and (7.10), respectively. For large
numbers of temporal samples M < oo, both (8.1) and (8.2) can often give very useful results
quite rapidly. The Markov inequality has the additional advantage that if the sample vector
components used to calculate R-' are temporally correlated as well as spatially correlated across
an array, EIb- 11 < oo can be demonstrated to be 0(11M) and is thus asymptotically unbiassed
in expectation.

If it can be demonstrated '1 that the estimated variances and corvariances have temporal
component correlations of less than M"''+ for the number of temporal samples A, where

I4H < oo for each of the sensors, 2 < n < 00, in the array, then the L, sample estimates
such as IIi~l2 are 111, - p11l are stoclastically convergent, and asymptotically unbiased.
Ot0( /8).

I
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9. CONCLUSIONS.

0 Optimal sampling occurs in the adaptive beam-forming estimation process when the
, number of temporal samples M ,n, the number sensors, n>2. If M < n, see e.g. (6.3), the
* probability density in the form of(7.9) does not exist.

* Block averaging as required in the sample estimation of R-' and hence p,, provides statis-
tically consistent estimates of the process parameters necessary to the efficient interference
supression of unwanted signals by the beamformer process.

* Exponential averaging IZ. does not provide numerically or statistically consistent esti-
mates of the requisite process parameters either for deterministic or stochastic sample
process.

* Spatially correlated signal process samples between adjacent sensor elements of an array

are accounted for in the estimation of R ,-1 and hence the subsequent density distrib-
ution given by 7.9.

In the case of a large number of sensors n, (n > 101) and the requirement that the number
of temporal samples M n, for the obtainment of statistically consistent supression
performance estimates, integration times consistent with specific improvements in SNR
ratios should pose no unusual requirements for computational agility. ,,, (s '

*A derived form of the complex Wishart distribution for the sample estimator of an array's
performance, G{II '2,), provides a probability measure for the precision of the estimated
performance magnitude Hi; 'II, as a function of the number of temporal samples M, the
number of sensor elements n and a significance level a.

For N temporally correlated sample values on a finite sample interval [O,7< oo] which are
such that the sample process covariances estimates {Cov(X,.X);ij = 1,2 .... , N and i:Aj)
< NP, ?1 , the derived form of the Wishart distribution G.(Ilf-'h) -# G(lIp-'JJhp-', M, n}
asymptotically, even for processes which do not strictly satisfy the initial Gaussian
assumptions.

.9-1
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